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The structure of peroxotungstic acid (W-PTA) prepared from metallic W and aqueous H20, was 
investigated based on Raman, IR, and XRD analyses. W-PTA was an amorphous compound con- 
structed of peroxo polytungstate anions, in which the anions were bound to each other through 
hydrogen bonding. RDF analyses suggested that the polyanion was Wn03s(Oz)b6-, in which a six- 
membered ring of corner-shared polyhedra, such as WO,(O,) or WO,, was sandwiched by two WrOle 
units consisting of edge-shared WO,. 6) 1991 Academic Press, Inc. 

Introduction 

One of the present authors reported that 
peroxotungstic acid (PTA) could be pre- 
pared using the reaction of H,O, with metal- 
lic tungsten (W-PTA) and tungsten carbide 
(WC-PTA) (I). PTA is amorphous and has 
a high water solubility, from which thin films 
can be easily formed. It has also been re- 
ported that the films prepared from W-PTA 
showed promising electrochromic proper- 
ties. From W-PTA and WC-PTA some crys- 
talline salts can be derived together with 
Ba*+, Cs+, K+ 18-crown-6, etc. (2); struc- 
tural studies have been performed (3, 4) on 
these materials. It has been thought that W- 
PTA and WC-PTA had structures similar 
to that of the K’ 18-crown-6 salt, 
[K(C,2H2,0,)],(CW,,0,,), in which the 

*Present address: Faculty of Engineering, Okayama 
University, Tsushimanaka, Okayama-shi 700, Japan. 

(CW,20,,)4- polyanion had a distorted Keg- 
gin-type structure (4). As for the starting 
materials, W- and WC-PTA, detailed struc- 
tural analyses have not been carried out. In 
this study we examined the structure of W- 
PTA using IR, Raman spectroscopic stud- 
ies, and a radial distribution analysis. 

Experimental 

Metallic W powder (8 g) was added little 
by little to a 15% H,O, aqueous solution 
(50 ml). After filtration of the unresolved 
impurities and decomposition of the excess 
H,O, with a Pt black net, the solution was 
rapidly condensed and pale yellow particles 
of W-PTA were obtained. The powdered W- 
PTA was used for the following analyses. 

Quantities of peroxo group O:- and the 
involved water were determined with an io- 
dometric titration and by thermogravimetric 
analyses (TGA). 

The density was measured by a pycnome- 
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FIG. 1. TGA and DTA curves of W-PTA. 

ter method in benzene. IR spectra were ob- 
tained from KBr pellets, and Raman spectra 
were measured with a JASCO R-800 spec- 
trometer at a scattering angle of 90”, a wave 
length of 4880 A, and a power of 3 mW. 
XRD measurements were carried out with a 
step-scanning method for 300 - 600 set of 
fixed counting time. A MO& radiation with 
an output of 60 kV- 150 mA was monochro- 
matized with Zr-Y-balanced filters, a graph- 
ite monochromator in a diffracted beam, and 
a pulse height analyzer. The radial distribu- 
tion function was obtained via the usual 
methods. 

Results and Discussion 

1. Composition and Some Properties 

The results of TGA and a differential ther- 
mal analysis (DTA) are shown in Fig. 1 
(heating rate = 20”Umin). Three steps of 
weight loss were observed at RT -2OO”C, 
250 - 330°C and 370 - 400°C. These losses 
were mainly assigned to dehydration. Three 
endothermic and one exothermic peak, 
which were attributed to the dehydration of 
involved water and to crystallization, re- 
spectively, appeared in the DTA curve. 
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W-PTA was heat-treated at 100, 150,200, FIG. 2. XRD profiles of the as-prepared W-PTA and 
240,350, and 450°C for 1 hr. XRD measure- the post-annealed samples. 

ments were carried out (fixed time = 10 set) 
to judge the degree of crystallinity of the 
samples. The obtained profiles are shown in 
Fig. 2. The samples were amorphous below 
2OO”C, and a crystalline phase was observed 
at 240°C. Above 350°C the samples were 
completely crystallized. The crystalline 
phase was assigned to monoclinic WO,. A 
broad peak seen at 28 = 4” shifted to lower 
positions as the heat-treatment temperature 
became higher. This fact suggested that the 
as-prepared W-PTA consisted of micro- 
voids and -clusters (polyanions). 

The analyzed composition and density are 
listed in Table I, together with those of the 
heat-treated derivatives. Peroxo groups 
were present only in the as-prepared W- 
PTA, and water was commonly involved in 

5 : 24OC 
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TABLE I 

ANALYZED COMPOSITIONS AND DENSITIES AND COORDINATION NUMBERS OF THE NEAREST NEIGHBORING 

W-W PAIRS (Nco) IN THE NEIGHBORING STRUCTURAL UNITS SHARING THEIR CORNERS AND EDGES 

Sample 

No. 

Heat-treatment 

temperature 
(“C) 

Composition 

o;-IW H,OIW 
Density 

(gicml) 

NW 

Corner Edge 
(3.72.& (3.22A) 

I RT 0.6 1.x 3.7(4) 3.1 I .o 
2 100 0.0 I.1 5.1(4) 4.5 0.5 

3 150 0.0 0.5 5.3(Y) 4.8 0.3 

4 200 0.0 0.4 5.7(I) s.0 0.2 

5 240 0.0 0.2 6.3(4) 

6 350 0.0 0.0 7.0(6) 
7 450 0.0 0.0 7.2(6) 

the amorphous samples. Two endothermic 
peaks were observed below 200°C in the 
DTA curve, RT -150°C and 100 -2Oo”C, 
and the peroxo groups disappeared in the 
sample heated at 100°C. It is therefore sug- 
gested that the first peak is due to the dehy- 
dration; the second one is assigned not only 
to dehydration but also to the decomposi- 
tion of the peroxo groups. 

The density increased along with the heat- 
treatment. This result supports the previous 
view that W-PTA contains microclusters. 

2. IR and Raman Spectra 

In Fig. 3 the IR spectrum of W-PTA is 
shown together with the results of the heat- 
treated derivatives. As the temperature be- 
came higher, the absorptive peaks around 
1600, 960, and 550 cm-’ became smaller. 
These peaks are assigned to the vibrations 
of OH, terminal W=O, and WO, , including 
the peroxo group (5, 6), respectively. The 
other broad peaks between 900 and 600 
cm-’ are attributed to the W-O stretching 
modes in the networks of W06 octahedra 
(5). 
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Raman spectra are shown in Fig. 4. The 
peaks of W=O were commonly seen in the 
amorphous samples heat-treated below 
350°C. The broad peaks around 700 - 800 
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FIG. 3. IR spectra of W-PTA and the post-annealed 

samples. 

cm-’ in the samples heated at 100 - 240°C 
could be deconvoluted in two peaks at 800 
and 700 cm-‘, which sharpened in the crys- 
tallized samples. The Raman profiles of the 
crystallized samples were the same as that 
of monoclinic WO,. The spectrum of W- 
PTA showed a different profile from other 
samples; the intensity around 900 - 600 
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TABLE II 

VIBRATIONAL FREQUENCIES (cm-‘) IN SOME TUNGSTEN OXIDES, HYDRATES, AND A PEROXOTUNGSTATE 
GIVEN BY DANIEL er al. (5) AND GRIFFITH et al. (6) 

Monoclinic Hexagonal 
Group WO, wo, WO? 2H10 WO, H?O WO, 113H:O K,W,O,, 4H,O 

Three- Two-membered 
Three-dimensional Two-dimensional dimensional pentagonal 

networks networks networks bipyramids 
w=o 960 948 945 958” 
o-o 850” 

807 817 805 
w-o 715 690 685 680 

645 662 645 
563” 

WA) 530” 

’ Given by Griffith and Wickins (6). 

cm-’ was very weak, and the peaks at 950 
and 550 cm-’ not observed in the post-an- 
nealed samples were assigned to vibrations 
of peroxo groups in W(0,) (6). Some Raman 
bands of tungsten trioxides, its hydrates, 
and a peroxotungstate are summarized in 
Table II. The peak positions of W-PTA are 
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FIG. 4. Raman spectra of W-PTA and the post-an- 
nealed samples. 

mostly in agreement with those of K,W,O, i 
.4H,O, whose structural units were pentag- 
onal bipyramids of WO,(O,),(OH,) (7). 

We consequently concluded that three- 
dimensional networks formed by WO, octa- 
hedra were constructed in the heat-treat- 
ment. On the contrary, the as-prepared W- 
PTA had lower dimensional networks or 
lower symmetrical octahedra forming three- 
dimensional networks. However, it was ob- 
vious that W-PTA contained WO, pentago- 
nal bipyramids such as WO,(O,),(OH,). 

3. Radial Distribution Functions 

The RDFs of the amorphous samples are 
shown in Fig. 5. Two main peaks were ob- 
served at 2 and 3.7 A, and were attributed 
to the nearest neighbors of W-O and W-W, 
respectively. The peaks were located at al- 
most the same positions in all samples. Ac- 
cordingly, it was found that the basic struc- 
ture formed in the as-prepared W-PTA was 
maintained even in the postannealed sam- 
ples. The peaks at R > 4 A are mainly af- 
fected by W-W; the peak around 5 - 6 A 
is assigned to W-W, which is located at 
opposite corners in the four-membered rings 
formed by WO, or W07 polyhedra, and the 
peak at 7 A is attributed to W-W in six- 
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FIG. 5. Observed RDFs of W-PTA and amorphous 
heat-treated samples. 

membered rings. The post-annealed speci- 
mens showed RDF profiles similar to that of 
the vacuum-evaporated WO, film (8). This 
suggests that the networks of six-membered 
polyhedra are present in W-PTA and its 
heat-treated derivatives. 

One small peak at 3.2 A was present in 
W-PTA; it almost disappeared in the heat- 
treated samples. This peak can also be as- 
signed to the nearest neighboring W-W, 
which is the pair in the neighboring WO, 
or WO, polyhedra sharing their edges. The 
large peaks at 3.7 A are due to the corner- 
shared polyhedra. A deconvolution was per- 
formed for the second peak by means of a 
pair-function method; we obtained the aver- 
aged coordination number of the nearest 
W-W pairs (Nco) as listed in Table I. As the 
heat-treatment temperature became higher, 
the Nco (edge) decreased but the Nco (cor- 
ner and total) increased. These results lead 
to the following suggestions: W-PTA and 

I I I I I , I I I 
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FIG. 6. Comparison between the observed and 
the calculated RDFs. (a) W-PTA; (b) heated at 
200°C; Cc) [K(C,*H,,O,)I,(CW,,O,,) . 2H,O; (4 
K6[W408KMh(C03)1 . 6H20; (e) Ba,W03, KJ Cs,WO, 

the amorphous samples contained a greater 
number of edge-shared polyhedra and ex- 
hibited a larger termination of networks. In 
the crystallized samples, the edge-shared 
polyhedra disappeared and continuous net- 
works were built. 

FIG. 7. Structure of “paratungstate-B” (II). 
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FIG. 8. Structural model of W-PTA. 

4. Structural Model 

Several crystals of tungsten oxides and its 
hydrates were examined on RDF but we 
could not find out the one that was appro- 
priate. We also investigated polytungstates, 
[K(C,,H,,O,)I,(CWI~~~~) * 21-1~0(4), 
&W408~02)6(C03)1 . 6H,O (9), etc., and 
Ba2’, Cs+ salts of W-PTA, Ba,WO,, and 
Cs,WO, (3). The calculated RDFs are 
shown in Fig. 6, together with the observed 

4000 ) I 
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FIG. 9. Observed RDF of W-PTA (solid line) and 
calculated RDF from the proposed structural model 
(broken line). 

ones for the as-prepared W-PTA and the 
sample No. 4 heated at 200°C. In these cal- 
culated RDFs the atomic contributions from 
K, C, H, Ba, Cs, and from 0 not bounded 
with W were neglected. At first we assumed 
that W-PTA had the same structure as the 
Keggin type (W,2040)8- because the K+ 18- 
crown-6 salt of WC-PTA had such a struc- 
tural unit (10). The peak positions in the 
calculated RDF, however, were not consis- 
tent with the observed ones in W-PTA. On 
the contrary, the RDF calculated from the 
Ba2+ salt showed good agreement with 
those of the heat-treated samples. We con- 
sequently concluded that the framework 
structure in the heat-treated samples was 
similar to that of the Ba*+ salt, whose struc- 
ture was based on three-, four-, and six- 
membered rings formed by WO, octahedra. 
As for the as-prepared W-PTA, we could 
not discover the appropriate tungstate. 

We finally made a model based on 
“Paratungstate-B” with the formula, 
[W,20,,H2]‘0- (II), the structure of which is 
illustrated in Fig. 7. Three-membered octa- 
hedra are located at the upper and lower 
sides sharing each edge. These units are also 
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present in the Keggin structure. The other 
octahedra at the left and right sides share 
their edges. The upper/lower octahedra and 
left/right ones are joined by sharing their 
corners. In Paratungstate-B the ratio of the 
corners to edges shared was 7/5 and the ob- 
served ratio of W-PTA was about 3/l. 
Therefore, some modifications are needed. 
We then constructed the model shown in 
Fig. 8. The side edge-shared octahedra in 
paratungstate-B were replaced with a six- 
membered ring in which W06 octahedra 
were linked through their diagonal. Further- 
more, WO, pentagonal bipyramids were 
substituted for the side octahedra to intro- 
duce peroxo groups. The upper and lower 
octahedra were joined in the same manner 
as those of Paratungstate-B. The chemical 
formula of this model polyanion was 
[W,,0,8(0,),]16-, The calculated RDF from 
this model showed good agreement with the 
observed one up to R = 4 A, as shown in 
Fig. 9. 

We did not consider the relations and in- 
teratomic contributions between the poly- 
anions so that the RDF in R > 4 A were 
unable to reproduce the observed pattern. 
We assumed that the nonbridging oxygen at 
the surface of this cluster (polyanion) model 
consisted of terminal W=O. H,O, and per- 
0x0 groups, and these clusters were con- 
nected with hydrogen-bonding, such as 
w=o.. . HIO-W and W-OH? . . OH, 
. . . o=w. 

Summary 

The structure of W-PTA, which was pre- 
pared from metallic W and an aqueous solu- 
tion of H,O, , was investigated using IR, Ra- 
man, and XRD. From the spectroscopic 
studies, it was suggested that W-PTA con- 
tains peroxo groups and terminal W=O 

bonds, and that it has structural units con- 
sisting of WO, octahedra and WO, pentago- 
nal bipyramids. From the diffraction stud- 
ies, it was found that W-PTA consisted of 
microclusters (polyanions), in which the 
networks were formed with corner-shared 
and edge-shared W06 and WO, polyhedra. 
The peroxo groups and the edge-shared 
polyhedra decreased and finally disap- 
peared as the heat-treatment temperature 
became higher. 

A Keggin-type structure was assumed but 
it was found that this structure was not suit- 
able for W-PTA. We suggested a model 
which was constructed from three-mem- 
bered WO, sharing their edges and a ring 
formed with six-membered W07 sharing 
their corners. 
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